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Abstract
We establish that by parametrizing the configuration space of a one-dimensional
quantum system by polynomial invariants of q-deformed Coxeter groups it is
possible to construct exactly solvable models of Calogero type. We adopt
the previously introduced notion of solvability which consists of relating the
Hamiltonian to finite-dimensional representation spaces of a Lie algebra. We
present explicitly the G

q

2-case for which we construct the potentials by means
of suitable gauge transformations.

PACS numbers: 02.20.Sv, 03.65.−w

1. Introduction

One of the ultimate goals in the study of quantum mechanical systems is to find explicit and
possibly exact solutions for the eigensystem of Hamiltonian systems. The Calogero [1–3]
and Sutherland [4–7] models are some of the well-known examples for theories which are
integrable and can be solved exactly, classically as well as quantum mechanically. The
integrability of the models was established more systematically by relating them to Lie
algebraic structures, in the so-called Hamiltonian reduction method [8–10] or by formulating
Lax pairs and zero curvature conditions [11–16]. Relatively recent [17–20] the procedure
to establish their exact solvability (which is conceptionally different from integrability) was
put on a more systematic ground by relating first the coordinates of the configuration space
of the Hamiltonians to invariant polynomials. It was shown that the differential operators in
these polynomials form a representation for certain algebras, albeit not uniquely. Having an
algebraic version of the model, solvability can be established thereafter by noting that the
eigenfunctions form a flag which coincides with the finite-dimensional representation space of
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a gl(N)-Lie algebra. This approach has turned out to be successful in many cases and could
even be extended to theories which are supersymmetric [21].

In a sequence of publications [22–25] this procedure was reversed. Instead of starting
with a concrete potential for a theory, Haschke and Rühl proposed to start with a Hamiltonian
already formulated in terms of invariant polynomials and construct the potential from it.
Hence, in this approach the solvability is already built in from the very start and the question is
addressed if possibly one obtains new types of potentials which are related to solvable models,
which are potentially also integrable. For several examples of models formulated in terms of
invariants of the Weyl group [22–24] and even for Coxeter groups which are not Weyl groups
[25, 26] it was shown that this is indeed possible.

The main purpose of this paper is to demonstrate that this procedure can also be carried
out successfully for models which are related to q-deformed Coxeter groups. We demonstrate
this for G

q

2 . At the same time we show that also for these groups the associated Hamiltonians
can be formulated in terms of the gl(N)-Lie algebra generators, hence guaranteeing their
solvability.

We shall focus here mainly on the construction of new potentials of Calogero type,
adopting to a large extent the point of view of the aforementioned papers. The obvious
question of solving the associated Schrödinger problem similar as has been done for the AN

case in [1–3] shall not be our concern here. While this is an interesting problem for future
work, it appears that it is still open even for almost all the non-deformed Lie algebras other
than the AN -series.

Our manuscript is organized as follows: in the following section we recall the notion of
solvability based on the fact that certain types of Hamiltonians can be formulated in terms
of the generators of the Borel subalgebra of the gl(N)-Lie algebra. We show how from
this formulation one may systematically construct potentials. In section 3 we assemble the
main mathematical properties about polynomial invariants of the Coxeter group, which play
the crucial role of coordinates in this context. In section 4 we extend these ideas to the
q-deformed Coxeter groups. In section 5 we discuss how certain choices of the pre-potential
lead to Cologero-type potentials. In sections 6 and 7 we discuss the Calogero model for G2

and its q-deformed version, respectively, deriving some explicit Calogero-type potentials. We
state our conclusions in section 8.

2. Construction of exactly solvable potentials

We start by recalling the notion of exact solvability as proposed originally by Turbiner [17]
about ten years ago. For this we require polynomial spaces of the form

Vn = span

{
I

k2
2 I

k3
3 , . . . , I

kN

N

∣∣∣∣∣
N∑

i=2

ki = n

}
. (2.1)

The Ii constitute some generic set of variables not further specified at this point. Evidently,
these spaces are embedded into each other V0 ⊂ V1 ⊂ V2 ⊂ . . . , hence forming an infinite
flag. A Hamiltonian operator H acting on such spaces and respecting

H : Vn �→ Vn (2.2)

possesses an infinite family of polynomial eigenfunctions. Therefore, it is natural to refer to
such type of Hamiltonians as exactly solvable.

It is now a matter of identifying the spaces Vn, which of course allows for numerous
solutions. It was noted that many known models can be fitted into this scheme when one
identifies Vn with a finite-dimensional representation space of a gl(N)-Lie algebra. A simple
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representation of this algebra in terms of first order differential operators is found when
expressing the usual gl(N)-generators Eij as

Eij ≡ J 0
ij = Ii∂j , Ei0 ≡ J−

i = ∂j , E0i ≡ J +
i = κIi −

N∑
k=2

IiIk∂k for κ ∈ R
+, (2.3)

where κ is an arbitrary constant and ∂i = ∂/∂Ii . It is easy to check that these differential
operators satisfy indeed the usual gl(N)-commutation relations

[Eij , Ekl] = δjkEil − δliEkj . (2.4)

According to the representation (2.3) all Hamiltonians which are expressible in terms of the
Borel subalgebra of gl(N), i.e. involving only the generators J 0 and J−, will respect (2.2)
and are therefore exactly solvable. Remarkably, it has turned out that many known solvable
models of Calogero and Sutherland type can be brought into the general form

H =
∑

ckl
ij J

0
ij J

0
kl +
∑

c̃k
ij J

0
ij J

−
k +

∑
ĉiJ

−
i +

∑
čij J

0
ij , (2.5)

with ckl
ij , c̃

k
ij , ĉi , čij ∈ R being some coupling constants.

Unfortunately not all models, in particular those we shall discuss below, can be fitted
into the gl(N)-framework. Nonetheless, following the same ideology as outlined above, one
can appeal to some other algebras which can be realized with different types of differential
operators than those provided in (2.3). For our purposes the semi-direct sum gl2(R) � R

�+1

will be rather useful [17]. It may be realized by the � + 5 generators

J 1 = ∂1, J 2 = I1∂1 − κ

3
, J 3 = I2∂2 − κ

3�
, (2.6)

J 4 = I 2
1 ∂1 + �I1I2∂2 − κI1, J 5+i = I i

1∂2 for 1 � i � �, κ ∈ R
+. (2.7)

The further condition κ ∈ Z
+ guarantees that the representation is finite-dimensional.

Expressing now Hamiltonians in terms of the Borel subalgebra of gl2(R) � R
�+1, i.e. the

J i for 1 � i � � + 5 with i �= 4, the flag space of the form

V̄n = span
{
I

k1
1 I

k2
2

∣∣0 � k1 + �k2 � n
}

(2.8)

will be left invariant in the sense (2.2).
The above observations inspired the starting point of the approach in [22–25] which is

the eigenvalue equation for the function ϕ( �I )

Dϕ = Eϕ (2.9)

with D being a symmetric Schrödinger operator of the form

D = −
∑
k,l

∂kg
−1
kl ∂l +

∑
k

rk∂k. (2.10)

Here g−1
kl denotes the inverse of the curvature free symmetric Riemannian tensor gkl = glk ,

which, in view of (2.5), is at most quadratic in the coordinates Ii . The functions rk are
assumed, again in view of (2.5), to be linear in the coordinates Ii . In many cases these
coordinates are taken to be invariant polynomials (for more details see below), albeit sometimes
re-parametrizations are needed to guarantee the quadratic and linear dependence of gkl and rk ,
respectively.

Clearly, the operator (2.10) is not of the usual form of a Hamiltonian, that is Laplacian
plus potential. In order to extract a potential from this Hamiltonian one has to carry out a
gauge transformation ϕ = eχψ to bring equation (2.9) into the more standard form

(−� + V )ψ = Eψ (2.11)
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involving the Laplace–Beltrami operator in general Riemannian space

� = 1√
G

∑
k,l

∂k

√
Gg−1

kl ∂l with G−1 = det g−1 (2.12)

and a potential V . Extracting then from the equality e−χD eχ = −� + V the terms of first and
zeroth order in ∂l , one finds

rk =
∑

l

g−1
kl ∂l(2χ − ln

√
G) (2.13)

V =
∑

k

rk∂kχ −
∑
k,l

[
∂k

(
g−1

kl ∂lχ
)

+ g−1
kl ∂kχ∂lχ

]
, (2.14)

respectively. Multiplying now (2.13) with g−1
lk and differentiating thereafter with ∂m one

realizes that the right-hand side is symmetric under the exchange m ↔ l. Therefore, one
deduces immediately for the left-hand side the same symmetry

∂m

∑
l

(gklrl) = ∂k

∑
l

(gmlrl). (2.15)

This equation constraints the values of rk and can be solved by

rk =
∑

l

g−1
kl ∂lρ. (2.16)

The function ρ introduced at this point is referred to as pre-potential. It should be stressed that
there is no compelling argument in this approach, which fixes this pre-potential and it remains
subject to a convenient ansatz. Substituting (2.16) back into (2.13) and (2.14) one then finds

χ = 1

2
(ρ + ln

√
G) (2.17)

V = 1

4

∑
k,l

g−1
kl ∂kρ∂lρ − 1

4

∑
k,l

g−1
kl ∂k(ln

√
G)∂l(ln

√
G) −

∑
k,l

∂k

(
g−1

kl ∂lχ
)
. (2.18)

It will turn out below that the term in V which involves χ is zero or constant. Provided that
g−1

kl ∂l(ln
√

G) is linear in �I , this would follow directly as a consequence of the assumption
already made on rk , namely that it is linear in the variables �I . In that case we can deduce that
this term in the potential would be constant and omitting it just amounts to a constant shift of
the ground state energy.

Before we can specify in more detail the ansatz for the pre-potential ρ proposed in [24],
we have to gather various facts about invariant polynomials. This will make the suggested
ansatz look very natural, albeit not entirely compelling.

3. Polynomial invariants of the Coxeter group

We specify here in more detail the nature of the variables �I and assemble some of their
mathematical properties. First we recall the well-known fact that with each simple root αi in a
root system � one can associate a reflection on the hyperplane through the origin orthogonal
to αi

σi(�x) = �x − 2
�x · αi

α2
i

αi for 1 � i � �, �x ∈ R
�. (3.1)

These reflections constitute the Coxeter group W of rank � or more specifically when
2α · β/β2 ∈ Z for all α, β ∈ � a Weyl group. One may then express each vector �x ∈ R

� as
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�x = ∑�
i=1 xiαi and associate with it a polynomial P(x1, . . . , x�). The action of the Coxeter

group on these polynomials is defined as

σiP (x1, . . . , x�) = P
(
σ−1

i (x1), . . . , σ
−1
i (x�)

)
. (3.2)

From the defining relations (3.1) and (3.2) it follows directly that by taking the simple roots
as a basis for R

� the action of the simple Weyl reflections acquires a particularly simple form

σiP (x1, . . . , x�) = P

(
x1, . . . , xi−1, xi −

∑
j

xjKji, xi+1, . . . , x�

)
. (3.3)

Here K denotes the Cartan matrix Kij = 2αi · αj

/
α2

j . The special set of polynomials which
does not change under the action of W , i.e. for which

σiIs(x1, . . . , x�) = Is(x1, . . . , x�) for all σi ∈ W (3.4)

are the polynomial invariants of the Coxeter group. It turns out that a basic set of linear-
independent polynomials {I1+s1 , . . . , I1+s�

} can be graded by the � exponents si of the Coxeter
group, with 1 � i � �. The subscripts 1 + si indicate here the degrees of the polynomials. It
is this set of basic invariants which one takes as the coordinates of the previously described
Hamiltonian system.

Let us now establish and recall some of their main properties, which we shall exploit
below.

3.1. Eigenbasis of the Coxeter element

It is clear that the choice of the basis for the coordinates will alter the form of the potential
and a priori there is no coordinate system which is more special than another. However,
certain choices make the final expressions very simple and one can take here the search for
simplicity as a guiding principle. A particularly suitable choice is the eigenbasis of the Coxeter
element. We will see that in this basis the expressions for the polynomial invariants simplify
considerably.

Adopting the notation of [27] (see also references therein), we first define the Coxeter
element σ in terms of the two special elements of the Weyl group

σ± :=
∏

αi∈±

σi, (3.5)

as σ := σ−σ+. Here we have partitioned the set of simple roots into two disjoint sets, say
αk ∈ + and βk ∈ −, by associating the values ci = ±1 with the vertices i of the Dynkin
diagram of the Lie algebra, in such a way that no two vertices related to the same set are linked
together. The eigensystem of the Coxeter element can then be brought into the form

σvj = e
2π i
h

sj vj and vj = e−i π
h
sj

∑
k

ξjkαk +
∑

k

ξjkβk, (3.6)

where we denote by ξ the matrix of left eigenvectors of the Cartan matrix, i.e.

�∑
j=1

ξijKjk = 4 sin2 πsi

2h
ξik, (3.7)

and the si are the aforementioned exponents. Then we implicitly define a variable substitution
{xi} → {wi} by the basis transformation

�x =
∑

i

xiαi =
∑
i,j

ζijwjαi =
∑

i

wivi (3.8)
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with

ζkj :=
{

e−i π
h
sj ξjk, for αk ∈ +

ξjk, for βk ∈ −.
(3.9)

Defining then also polynomials in these new variables, we obtain as a consequence of (3.6)
the action of the Coxeter element on these polynomials

σP (w1, . . . , w�) = P
(
w1 e

2π i
h , w2 e

2π i
h

s2 , . . . , w� e− 2π i
h

)
. (3.10)

Recall here that si + s�−i = h for 1 � i � �. Since the Coxeter element is built from simple
Weyl reflections it follows from (3.4) that the invariants of the Coxeter group are also invariant
under the action of the Coxeter element

σIs(x1, . . . , x�) = Is(x1, . . . , x�) = Is

(∑
i

ζ1iwi, . . . ,
∑

i

ζ�iwi

)
. (3.11)

To be able to compute the action of the Weyl reflections we have to express the polynomials
in terms of the x-variables. Nonetheless, by means of (3.8) we can also translate the action of
the Weyl reflections in the x-variables to an action in terms of the w-variables which allows
for a more concise and possibly generic formulation of the invariants (see below).

3.2. Universal formulae for invariants

It is a natural question to ask whether there exist formulae which express the invariants in a
universal fashion that is valid for all algebras. Indeed for invariants of degree 2 this is possible
and we find

I2(�x) =
�∑

i=1

tix
2
i +
∑
i<j

xiKij tj xj , Kij tj = Kjiti , ti > 1. (3.12)

Here the ti denote the symmetrizers of the Cartan matrix, which could be avoided in the above
expression by absorbing them into the roots, which amounts to taking the simple co-roots
instead of the simple roots as a basis. For higher degrees we did not succeed in finding
universal formulae for the invariants.

Changing, however, to the eigenbasis of the Coxeter element it is far more obvious how
to write down a universal expression. From (3.10) it is clear that any invariant has to be of the
form

Is( �w) =
s∑

a1,...,a�=1

cs(a1, . . . , a�)w
a1
1 . . . w

a�

� (3.13)

where the constants cs(a1, . . . , a�) are constrained as

cs(a1, . . . , a�) =

�= 0 if

�∑
i=1

ai = s,
�∑

i=1
aisi = nh, n ∈ Z

= 0 otherwise.
(3.14)

Consequently, this means for instance that the quadratic invariant has to be of the form

I2 =
∑

i

c2(ai, a�−i+1)wiw�−i+1. (3.15)

One can proceed similarly for higher degrees, but it is then less obvious how to fix the constants
cs(a1, . . . , a�). Hence, for the time being we have to rely on case-by-case studies, but even for
explicit algebras the most generic expressions are difficult to find in the literature. See [28]
for a complete list.
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3.3. Jacobians and Riemannians

It will turn out that a key quantity in this scheme is the Jacobian determinant related to the
polynomial invariants

J = det(j) with jkl = ∂I1+sk

∂ul

. (3.16)

The determinant J is known to possess various important properties, see, e.g., [29]:

(i) The polynomials I1+s1 , . . . , I1+s�
in u1, . . . , u� are algebraically independent if and only

if J �= 0.
(ii) Defining for each root α a linear polynomial

pα(u1, . . . , u�) =
�∑

i=1

γ̃ (i)
α ui with γ̃ (i)

α ∈ R, (3.17)

such that pα(u1, . . . , u�) = 0 defines the hyperplane through the origin orthogonal to α.
Then one can factorize J as

J = µ
∏

α∈�+

pα(u1, . . . , u�) with µ ∈ R, (3.18)

where �+ denotes the set of positive roots.
(iii) Defining the inverse Riemannian in terms of the basic invariants {I1+s1 , . . . , I1+s�

}

g−1
kl =

�∑
i=1

∂Ik

∂ui

∂Il

∂ui

, (3.19)

the Jacobian determinant is related to the determinant of the inverse Riemannian as

J 2 = G−1 = det g−1. (3.20)

The factorization properties (3.18) and (3.20) for J and G−1, respectively, will make the ansatz
for the pre-potential ρ appear very natural.

It is worth pointing out that the choice of the metric (3.19) guarantees that the Laplacian
in the variables �u is flat. This is easily seen by considering the change of the Euclidean metric
tensor, i.e. g(�u)mn = δmn, under a coordinate transformation. For this we just have to multiply

g(I)ij =
∑
m,n

∂um

∂Ii

∂un

∂Ij

g(u)mn =
∑
m

∂um

∂Ii

∂um

∂Ij

, (3.21)

with (3.19). This choice avoids the entire analysis which is needed in this approach to guarantee
the flatness of the Laplacian as carried out in [22].

4. Polynomial invariants of the q-deformed Coxeter group

We extend now the previous discussion and seek polynomials which are invariant under
q-deformed Weyl reflections. We adopt here the notation of [27], (see also [30]), for more
details on q-deformed Weyl reflections and the general context in which they emerged. When
acting on a simple root they are defined as

σ
q

i (αj ) = αj − (2δij − [Iji]q)αi (4.1)

with I = 2 − K being the incidence matrix of some Lie algebra and [n]q = (qn − q−n)/(q −
q−1) being the standard notation for a q-deformed integer. According to the notions outlined
in the previous section the invariants are obviously defined by

σ
q

i Is(x1, . . . , x�) = Is(x1, . . . , x�) for 1 � i � �. (4.2)
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Once again for polynomials of degree 2 we can write down a universal formula

I
q

2 =
�∑

i=1

[ti]qx
2
i +
∑
i<j

xi[Kij ]q[tj ]qxj (4.3)

which is invariant under the q-deformed Weyl reflections. As in the non-deformed case
higher invariants are difficult to write down in a universal form. Note also that the q-deformed
invariants in the sense of (4.2) are not invariants of the q-deformed Coxeter elements as defined
in [30, 27], as the latter does not just consist of transformations σ

q

i . However, we can alter
this definition slightly to achieve this, see section 7.

5. Ansatz for the pre-potential

Having fixed a set of basic invariants
{
I1+s1 , . . . , I1+s�

}
one assumes that the wavefunctions in

(2.9) and (2.11) depend on these coordinates, that is ϕ → ϕ( �I ) and ψ → ψ( �I ). Naturally one
can then also view the potential as a function of the invariants, i.e. V → V ( �I ) and understand
that ∂k ≡ ∂/∂Ik . Defining the inverse Riemannian as in (3.19) and using (3.20), we can
re-write the potential (2.18) in the form

V = 1

4

∑
k,l

g−1
kl ∂kρ∂lρ − 1

4J 2

∑
k,l

g−1
kl ∂kJ ∂lJ − 1

2

∑
k,l

∂k

[
g−1

kl

(
∂lρ − 1

J
∂lJ

)]
. (5.1)

For the above-mentioned reason the last term will usually drop out. It is apparent from
this formulation, that re-scaling J by a constant will not alter the potential, a fact which is
important with regard to the occurrence of possible coupling constants. To be more specific
about the potential one has to choose a suitable pre-potential. In [23–25] the following ansatz
was proposed:

ρ =
�∑

i=0

γi ln Pi( �I ). (5.2)

The Pi( �I ) for 1 � i � � are defined by the factorization of the determinant of the inverse
Riemannian

J 2 = G−1 = det g−1 =
�∏

i=1

Pi( �I ). (5.3)

Evidently, this ansatz (5.3) is inspired by the properties (ii) and (iii). However, there is an
additional significant constraint, namely that the Pi( �I ) are functions of the invariants �I , which
as was argued above is needed to guarantee the solvability. Often one would like to obtain also
an additional harmonic confining term proportional to

∑
i u

2
i in V . This is easily achieved

by including also a factor of the form P0 ∼ exp
(∑

i u
2
i

)
into the ansatz for the pre-potential

(5.2). For the reasons outlined in section 2, the entire Hamiltonian, that means also this term,
has to be expressed in terms of invariant polynomials. Usually we can take P0 = exp(I2).

Substituting the ansatz (5.3) into (2.18), the potential acquires the form

V = 1

4

∑
i,j,k,l

(
γiγj − 1

4

)
g−1

kl ∂k(ln Pi)∂l(ln Pj ) − 1

2

∑
i,k,l

(
γi − 1

2

)
∂k

[
g−1

kl ∂l(ln Pi)
]
. (5.4)

As was pointed out in [24], it will turn out that the terms with i �= j in the first term are
constants (even zero) most of the time, which therefore can be dropped safely by just shifting
the ground state. The other motivation for the ansatz (5.3) is that one would like the two terms
in (5.1) or (2.18) to combine naturally.
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Comparing now (5.3), (3.18) and (3.20) we can proceed and exploit the fact that the Pi

factorize further into linear polynomials

Pi =
∏

α∈�
(i)
+

[pα(�u)]2. (5.5)

The relation (5.5) is here the defining relation for the set of positive roots �
(i)
+ . Exploiting the

fact that the pα(�u) are linear in �u, see (3.17), and changing from the invariant polynomials as
coordinates to the �u-variables, we obtain

V =
∑
i,j


(γiγj − 1

4

) ∑
α∈�

(i)
+ ,β∈�

(j)
+

∑
k γ̃ (k)

α γ̃
(k)
β

pα(�u)pβ(�u)


 . (5.6)

Recall that the γ̃ (k)
α are defined in (3.17). Expression (5.6) constitutes a general formula

for potentials when starting with any Coxeter group. This structure will survive in different
coordinate systems, as clearly the pα(�u) remain linear after linear coordinate transformations.
Often one changes the coordinate system by using an explicit representations for the roots in
an orthogonal basis, which one may find in various places of the literature, e.g. [29]. Then
(5.6) enables one to write down directly the potentials associated with any Coxeter group. In
practice it turns out that only the diagonal terms in the sum survive, i.e. α = β, such that the
potentials will always be of Calogero type. We omitted in (5.6) the term resulting from the
last term in (5.4) and also a possible constant.

6. From G2-polynomial invariants to the Calogero models

In [19] it was shown that the Calogero models for three particles exhibit an underlying
G2-structure, which can be exploited to establish their solvability. In [24] this procedure
was reversed and it was shown that the approach outlined in sections 2 and 3 indeed yields
potentials of the Calogero type when one starts with a G2-structure. Here we recall briefly the
procedure, mainly to set the scene for the q-deformed treatment below, but also to establish
a few facts not pointed out so far. In particular, in [19] as well as in [24] not the most
general G2-invariants were used. As we will show below the most generic invariants involve
some arbitrary constants. The obvious question to ask is whether one obtains a new type
of potential when using the procedure outlined above in terms of these generic coordinates,
possibly involving additional coupling constants.

Let us start with the action of the G2-Weyl reflections on the simple roots

σ1(α1) = −α1 σ1(α2) = 3α1 + α2 (6.1)

σ2(α1) = α1 + α2 σ2(α2) = −α2. (6.2)

Then for a general vector �x = x1α1 + x2α2 in R
2 we have

σ1(�x) = (3x2 − x1)α1 + x2α2 (6.3)

σ2(�x) = x1α1 + (x1 − x2)α2, (6.4)

such that

σ1P(x1, x2) = P(3x2 − x1, x2) (6.5)

σ2P(x1, x2) = P(x1, x1 − x2). (6.6)

Equations (6.5) and (6.6) follow also directly from (3.3).
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Using (6.5) and (6.6) we can now generate solutions to equation (3.4), i.e. construct
the invariant polynomials. The procedure is straightforward. We simply write down the
most generic expression for a potential candidate for a polynomial invariant Is(�x) of degree s
similar to the form as in (3.13) with arbitrary coefficients cs , but now in terms of the x-variables.
Acting then with all simple Weyl reflections on this polynomial and demanding invariance (3.4)
leads to a system of equations which determine the cs . Depending on the degree and the algebra
this might not yield enough equations to fix all constants and one ends up with expressions
still involving free parameters. In this manner we find as generic invariants

I2 = κ2
(

1
3x2

1 + x2
2 − x1x2

)
(6.7)

I6 = κ6
(− 2

27x6
1 + 2

3x5
1x2 − 5

3x4
1x

2
2 + 5x2

1x4
2 − 6x1x

5
2 + 2x6

2

)
+ κ̃6I

3
2 . (6.8)

Here κ2, κ6 and κ̃6 remain arbitrary constants. We see that besides an overall constant, which
is naturally always present, I6 also involves an additional free parameter κ̃6.

A first restriction on possible values the constants might take comes from the fact that we
want I2 and I6 to be algebraically independent. To establish this we compute first the Jacobian
determinant for these invariants according to the definition (3.16)

J = 2
3κ2κ6x1x2(x1 − x2)(x1 − 2x2)(x1 − 3x2)(2x1 − 3x2). (6.9)

As we expect from property (i) stated in section 3 and the explicit expression in (6.8) we have
to keep κ6 �= 0 in order to guarantee the algebraic independence of I2 and I6. Obviously,
for κ6 = 0 we have I6 = κ̃6I

3
2 . We also note that κ̃6 can remain completely arbitrary in this

context, but as we see below, we cannot simply set it to zero for our purposes.
Alternatively, we can compute the Jacobian determinant by an entirely different formula,

namely (3.18), and thus confirm the computation which led to (6.9). To be able to use (3.18),
we recall that the positive roots of G2 are, (see e.g. [31, 29])

�G2
+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}, (6.10)

such that the hyperplanes result to

pα1 = 2x1 − 3x2, pα1+α2 = x1 − 3x2, p2α1+α2 = x1,

p3α1+α2 = x1 − x2, pα2 = x1 − 2x2, p3α1+2α2 = x1.
(6.11)

Assembling the pα into the product (3.18) the result confirms our findings (6.9) with
µ = (2/3)κ2κ6. Note, that the constants κ2 and κ6 organize in a separate factor in J ,
such that different choices, apart from κ2 = 0 or κ6 = 0, will not alter the polynomial structure
of J . From (5.1) we deduce that in the second term of the potential the overall factor in J just
cancels, such that the constants κi completely drop out from this term.

So far, we have only two coordinates. To incorporate a three-body interaction we need
one more coordinate. Let us therefore choose an orthogonal basis in R

3 for the simple roots
α1 = ε1 − ε2 and α2 = −2ε1 + ε2 + ε3, with εi · εj = δij (see, e.g., [29]). Then we can
introduce a new set of variables via the relation

�x = x1α1 + x2α2 = (x1 − 2x2)ε1 + (x2 − x1)ε2 + x2ε3 = y1ε1 + y2ε2 + y3ε3, (6.12)

with the built-in constraint y1 + y2 + y3 = 0. In these variables the action of the Weyl group
on the same polynomials becomes

σ1P(y1, y2, y3) = P(y2, y1, y3) (6.13)

σ2P(y1, y2, y3) = P(−y1,−y3,−y2). (6.14)
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In principle, we could proceed as above, i.e. writing down generic expression with arbitrary
coefficients and use directly (6.13) and (6.14) to find invariant polynomials in the y-variables.
However, since we have increased the number of coordinates also the amount of unknown
coefficients grows and we will end up with polynomials involving many more free constants
than just the three we are left with when using the x-variables. Instead, as we know the
invariants already, we can also use in (6.7) and (6.8) directly the substitutions x1 → −y1 −2y2

and x2 → −y1 − y2, such that we obtain

I2 = κ2
(
y2

2 + y2
1 + y1y2

)/
3 (6.15)

I6 = 1
27 (κ̃6 − 2κ6)

(
y6

1 + y6
2

)
+ 1

9 (κ̃6 − 2κ6)
(
y5

1y2 + y1y
5
2

)
+ 1

9 (5κ6 + 2κ̃6)
(
y4

1y
2
2 + y2

1y4
2

)
+ 1

27 (40κ6 + 7κ̃6)y
3
1y

3
2 . (6.16)

Only for the special choice κ2 = −3, κ̃6 = 2κ6 and κ6 = 1 expressions (6.15) and (6.16)
reduce to the coordinates λ1, λ2 used in [19]. Note, that in the y-variables the invariants
become symmetric polynomials [32].

In order to reproduce the Calogero potentials we need to make yet another coordinate
transformation and introduce Jacobi relative coordinates

yi = zi − 1

3

3∑
j=1

zj , (6.17)

which separate off the centre of mass motion. The constraint in the y-coordinates is now
replaced by z1 + z2 + z3 = 3Z, where Z is constant. In these coordinates we compute the
inverse Riemannian (3.19) to

g−1
ij =

3∑
k=1

∂Ii

∂zk

∂Ij

∂zk

= κ2

(
2/3I2 2I6

2I6 6I 2
2

/
κ3

2

[
2κ̃6I6 + I 3

2

(
4κ2

6 − κ̃2
6

)/
κ3

2

])
ij

. (6.18)

Apparently g−1
ij is not quadratic in the variables Ii , which as we discussed is a necessary

requirement to be able to bring the Hamiltonian into the form (2.5) and hence ensuring the
solvability of the model. However, for κ̃6 = 2κ6 one can choose a different set of variables
I2 = τ2, I6 = τ 2

3 , see [19], such that ∂ig
−1
ij ∂j is of the desired form in the τ variables.

Alternatively, one can also use the representation of a different algebra to establish solvability
[19]. Let us from now on take κ̃6 = 2κ6 and κ2 = 1 but leaving κ6 arbitrary. Then we compute
from (6.18)

G−1 = det g−1 = 4I6
(
4κ6I

3
2 − I6

)
. (6.19)

For the pre-potential we make now an ansatz according to (5.3), where we also include the
previously mentioned P0-term

P0 = eI2 , P1 = 4κ6I
3
2 − I6, P2 = I6. (6.20)

From this we compute with formula (5.4) the potential to

V = γ 2
0

6
I2 + 3λ1κ6

I 2
2

4κ6I
3
2 − I6

+ 3λ2κ6
I 2

2

I6
(6.21)

= 1

2
ω2

3∑
k=1

z2
k + λ1

∑
1�i<j�3

1

(zi − zj )2
+ 3λ2

∑
1�i<j�3

i,j �=k

1

(zi + zj − 2zk)2
, (6.22)
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where the coupling constants are ω = γ0/(3
√

2) and λi = 2γ 2
i − 1/2 for i = 1, 2. The

potential in the form (6.22) corresponds to the so-called rational G2-model [33], which reduces
to the Calogero model [1–3] when the three-particle interaction is switched off, i.e. for λ2 → 0.
Note that the coupling constants γ0, γ1 and γ2 which enter the scheme through the ansatz for
the pre-potential just re-parametrize the coupling constants of the G2-model. Note also that
the constant κ6 has dropped out completely, such that any choice, apart from κ6 = 0, will
yield the same potential (6.22). Hence, the ambiguity in the choice of the invariant polynomials
as coordinates has no bearing on the physics.

The invariants acquire a particularly simple form when we use the eigenbasis of the
Coxeter element. The transformations outlined above yield for the G2-case

x1 =
√

3(e−iπ/6w1 − e−iπ5/6w2), x2 = w1 + w2, (6.23)

such that the invariants simplify considerably

I2 = κ2w1w2 and I6 = κ6
(
w6

1 + w6
2

)
+ κ̃6w

3
1w

3
2. (6.24)

We then find for the Jacobian

J = −6κ2κ6
(
w6

1 − w6
2

)
(6.25)

= −6κ2κ6(w1 + w2)(w1 − w2)
(
w2

1 − w1w2 + w2
2

)(
w2

1 + w1w2 + w2
2

)
, (6.26)

which could of course be used to construct the potential in these variables. As this type of
factorization of J involves quadratic polynomials we will end up with potentials not quite of
Calogero type. To achieve this we would have to factorize the last two terms further involving
complex coefficients, but in that case the individual two-particle interactions terms would be
complex. Solvability is only guaranteed when we can express the factors in terms of the
invariant polynomials.

7. Exactly solvable potentials from q-deformed G2-polynomial invariants

Let us now extend the previous analysis to the q-deformed case. To commence we need
to evaluate the q-deformed Weyl reflections σ

q

i as defined in (4.1) for which we require the
q-deformed Cartan matrix. In our conventions it reads for the G2-case

Kq =
(

2 −1
−[3]q 2

)
. (7.1)

With Kq at hand we can now seek invariant polynomials according to the definitions (4.1) and
(4.2). We proceed in the same manner as for the non-deformed case and start with generic
expressions I

q
s (�x) for polynomials of degree s as in (3.13) and fix the constants as outlined

above. For generic deformation parameters q we did not find invariants. However, if we
parametrize the q as

q2 = 1

2

(
1 + 2 cos

2π

h

)
+

√(
1 + 2 cos

2π

h

)2

− 4 (7.2)

with h being some integer, the q-deformed Cartan matrix becomes

(Kq)ij = 2α
q

i · α
q

j

α
q

j · α
q

j

=
(

2 −1
−4 cos2 π

h
2

)
ij

. (7.3)

Implicitly, we used here (7.3) to define some q-deformed roots α
q

i . Clearly for h = 3 we
recover the Cartan matrix of A2, for h = 4 we obtain that of C2 and h = 6 corresponds to G2.
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For the values (7.2) of q we find there exist always the invariants I
q

2 and I
q

h . From the above
mentioned arguments this suggests that the exponents of this algebra G

q

2 are 1 and h− 1. This
assertion is supported by the observation that the formula for eigenvalues of the Cartan matrix
(3.7) still holds for the q-deformed case (7.3) when taking s1 = 1 and s2 = h − 1.

As we argued in the previous section, it is difficult to find generic expressions for the
invariants in the x-variables. However, as we will see in the eigenbasis of the Coxeter element
this task simplifies drastically. According to (3.8) and (3.9) we have the transformations

�x =
(

1 + e− 2π i
h 1 + e

2π i
h

1 1

)
�w ⇔ �w = i

2 sin 2π
h

(
1 −1 − e

2π i
h

−1 1 + e− 2π i
h

)
�x, (7.4)

such that the q-deformed Weyl reflections in the w-variables simplify to

σ
q

1 (w1) = w2, σ
q

1 (w2) = w1, σ
q

2 (w1) = e
2π i
h w2, σ

q

2 (w2) = e− 2π i
h w1.

(7.5)

The σ
q

1 -transformations dictate that the invariants have to be symmetric in w1, w2 and the
σ

q

2 -transformations constrain their overall degree. With (7.5) we can easily find the most
generic expressions for the invariants

I
q

2 = κ2w1w2 and I
q

h = κh

(
wh

1 + wh
2

)
+ κ̃h(w1w2)

h/2. (7.6)

where κ̃h = 0 for h being an odd integer. We can now transform back to the x-variables and
confirm for instance the generic formula (4.3) for the invariant of degree 2, which still takes
on a fairly simple form

I
q

2 = κ2

4 sin2(2π/h)

(
x2

1 + 4 cos2 π

h
x2

2 − 4 cos2 π

h
x1x2

)
. (7.7)

On the other hand, the expressions for the I
q

h are already quite cumbersome, although it is
clear how to construct them from (7.6) and ( 7.4).

As we saw in the previous section it was crucial to change the coordinate system yet
further to recover the Calogero potentials in the usual form. We proceed here similarly. Let
us choose first an orthogonal basis for the two simple q-deformed roots in R

3

α
q

1 =
(√

3 cos
2π

h
+ sin

2π

h
,−2 sin

2π

h
, sin

2π

h
−

√
3 cos

2π

h

)/√
3 (7.8)

α
q

2 =
(
−

√
3 −

√
3 cos

2π

h
− sin

2π

h
, 2 sin

2π

h
,
√

3 +
√

3 cos
2π

h
− sin

2π

h

)/√
3. (7.9)

The inner products of these roots are α
q

1 ·αq

1 = 2, α
q

2 ·αq

2 = 8 cos2 π
h

and α
q

1 ·αq

2 = −4 cos2 π
h

such that we recover the q-deformed Cartan matrix according to (7.3). Of course the choices
(7.8) and (7.9) are not uniquely determined. As an additional selection criterion we demand
that I

q

2 will be of an analogous form (6.15) as in the non-deformed case for all choices of h,
such that it will be ensured that we can express g−1

22 in terms of I
q

2 . At the same time this will
ensure that P0 = exp

(
I

q

2

)
yields the harmonic confining potential, similarly as for the standard

G2-case. The above choice for the simple roots induces a definition for new variables

�y = x1α
q

1 + x2α
q

2 , (7.10)

which satisfy the constraint y1 + y2 + y3 = 0. In turn this means that we can replace in (7.7)

�x = −1

2

(
2

(
1 +

√
3 cot π

h

)
2
(
1 +

√
3 cot 2π

h

)
)

�y (7.11)
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such that I
q

2 is indeed always of the form (6.15)

I
q

2 = κ2

4 sin2(2π/h)

(
y2

1 + y2
2 + y1y2

) = 3κ2

8 sin2(2π/h)

(
3∑

i=1

z2
i − 3Z2

)
. (7.12)

Again it is obvious how to obtain the expressions for I
q

h , but they turn out to be more
cumbersome. From (7.6) it is apparent that the case of even and odd Coxeter number exhibits
different behaviour. We treat them now separately and supply for each case an explicit
example.

7.1. Even Coxeter numbers, h = 8

As the obvious difference between the odd and even case we found that in the even case the
additional constant κ̃h is entering the procedure. We shall see that there are also other more
profound differences. We present the case h = 8 in detail. For this the relation (7.2) simply
yields

q2 = 1
2 (1 +

√
2) +

√
2
√

2 − 1, and [3]q = 2 +
√

2. (7.13)

We can now take the invariants as given by the relations (7.6) and carry out the substitutions
�w → �x → �y → �z specified above. In terms of the Jacobian relative coordinates zi the inverse
Riemannian (3.19) results to

g−1
ij =

3∑
k=1

∂Ii

∂zk

∂Ij

∂zk

= κ2

(
I2 4I8

4I8 16I 3
2

/
κ4

2

[
2κ̃8I8 + I 4

2

(
κ̃2

8 − 4κ2
8

)/
κ4

2

])
ij

. (7.14)

At this point we are facing a similar problem as in the non-deformed case, that is h = 6,
namely that g−1

ij is not of degree 2 in the variables Ii . Whereas for h = 6 one may find a
suitable variable transformation, we did not succeed in this case. Nonetheless, the solvability
of the model may now be guaranteed by relating the model to gl2(R) � R

4, rather than gl(N),
see (2.6) and (2.7).

Keeping from now on κ̃8 = 2κ8 and also κ2 = 1, we can bring the Hamiltonian into the
desired form for the Schrödinger operator (2.5), (2.10)

D = −J 2J 1 − 8J 3J 1 − 64κ8J
3J 8 +

[
4(γ1 + γ2) − 5 − 11

9
κ8

]
J 1

− 16κ8

[
(1 − γ2) +

4κ8

9

]
J 8 + γ0J

2 + 4γ0J
3. (7.15)

To turn this operator into the standard form (2.11) we follow the procedure outlined in section 2.
First, we compute

G−1 = det g−1 = −16I8
(
I8 − 4κ8I

4
2

)
. (7.16)

Before we proceed further to compute the potential, let us see if we still have a relation between
J and G−1 of the type (3.20) for the q-deformed algebra. In particular, we wish to see whether
a relation of the type (3.18) still holds. For this purpose we need first of all a notion of positive
q-deformed roots. We assume that these roots are generated in a similar way as the ordinary
roots, i.e. by repeated action of the Coxeter element. Defining a q-deformed version of this3

σq = σ
q

2 σ
q

1 (7.17)

3 This q-deformed Coxeter element differs slightly from that defined in [30, 27], as here there is no τ -transformation
involved. The Coxeter element in [30, 27] is only of order h up to some factors of q.
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we compute the entire set of q-deformed roots �q lying in the orbits of the simple q-deformed
roots α

q

i , σ 1
q

(
α

q

i

)
, σ 2

q

(
α

q

i

)
, . . .

σ 0
q α

q

1 α
q

2

σ 1
q −α

q

3 = −(αq

1 + α
q

2

)
α

q

6 = (2 +
√

2)α
q

1 + (1 +
√

2)α
q

2

σ 2
q −α

q

4 = −(1 +
√

2)α
q

1 − √
2α

q

2 α
q

7 = (2 + 2
√

2)α
q

1 + (1 +
√

2)α
q

2

σ 3
q −α

q

5 = −(1 +
√

2)α
q

1 − α
q

2 α
q

8 = (2 +
√

2)α
q

1 + α
q

2

σ 4
q −α

q

1 −α
q

2

. (7.18)

Note that the order of the Coxeter element (7.17) is indeed h = 8, i.e. σ 8
q = 1. We adopt

now the same notion for positive and negative roots as in the non-deformed case, that is we
call α = ∑ niα

q

i a positive root if all coefficients ni are positive. With this notion the set of
the 2h roots can be separated equally into h positive and h negative roots. We have verified
this statement up to h = 20 of even Coxeter numbers, which strongly suggests that it holds in
general. Using now (7.18) we can compute the hyperplanes through the origin to all positive
q-deformed roots

pα
q

1
= 2x1 − (2 +

√
2)x2 pα

q

2
= x1 − 2x2

pα
q

3
= √

2x1 − (2 +
√

2)x2 pα
q

6
= √

2x1 − 2(1 +
√

2)x2

pα
q

4
= x2 pα

q

7
= x1

pα
q

5
= x1 − x2 pα

q

8
= (2 +

√
2)x1 − 2(1 +

√
2)x2.

(7.19)

Comparing now with (7.16) we have once again a relation between J and G−1 of the type
(3.20) where J can be expressed as a product of hyperplanes (3.18)

G−1 = κ2
8

4(3 + 2
√

2)

∏
αq∈�+

q

(pαq )2. (7.20)

The two factors in (7.16) admit yet a further interpretation. Organizing the roots into two sets
�

q
s and �

q

l of short and long roots, respectively, we find the identities

− κ8

4

∏
αq∈�s

(pαq )2 = I8 − 4κ8I
4
2 and

κ8

16(3 + 2
√

2)

∏
αq∈�l

(pαq )2 = I8. (7.21)

According to (5.3) we make now the following ansatz for the pre-potential:

P0 = eI2 , P1 = I8 − 4κ8I
4
2 , P2 = I8. (7.22)

From formula (5.4) and including also the P0-term we then compute the potential to

V = γ 2
0

4
I2 − 16λ1κ8

I 3
2

I8 − 4κ8I
4
2

+ 16λ2κ8
I 3

2

I8
(7.23)

with λi = (γ 2
i − 1/4

)
for i = 1, 2. Using the above-mentioned identities or directly (5.6), we

can also re-write this potential in terms of the z-variables. First of all we compute

P1 = 1

4233
(z1 − z3)

2 (z1 + z3 − 2z3)
2
∏

ε=±1

[(1 + ε
√

3)z1 + (1 − ε
√

3)z3 − 2z2]2 (7.24)

P2 = 1

4334

∏
ε,ε̄=±1

[(1 − ε̄
√

3 − ε
√

6)z1 + (1 + ε̄
√

3 + ε
√

6)z3 − 2z2]2. (7.25)
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We find

V = 1

2
ω2

3∑
k=1

z2
k +

λ1

(z1 − z3)
2 +

3λ1

(z1 + z3 − 2z2)
2

+
∑
ε=±1

6λ1

[(1 + ε
√

3)z1 + (1 − ε
√

3)z3 − 2z2]2

+
∑

ε,ε̄=±1

6(2 + εε̄
√

2)λ2

[(1 − ε̄
√

3 − ε
√

6)z1 + (1 + ε̄
√

3 + ε
√

6)z3 − 2z2]2
(7.26)

with ω = γ0

√
3/(2

√
2). We omitted here a constant which contains the centre of mass

coordinate. Remarkably, all off-diagonal terms, that is terms in (5.4) with i �= j , cancel each
other. This potential has a very similar structure as the usual Calogero potentials (6.22), but
it involves now deformed two- and three-particle interactions. We find similar structures for
higher values of h. Responsible for this structure is the fact that we can still factorize J , and
therefore G−1 in terms of products of hyperplanes as in (7.20). Remarkably, these potentials
are all exactly solvable by construction.

7.2. Odd Coxeter numbers, h = 5

The structure for theories with odd values of the Coxeter number is somewhat different. Let
us consider h = 5 in more detail. In that case the relation for the deformation parameter (7.2)
simply yields a root of unity

q = eiπ/10 and [3]q = 3 +
√

5

2
. (7.27)

Replacing now in equation (7.6) the variables �w → �x, the invariant of degree 5 in the
x-variables is still not too lengthy, unlike for greater values of h, and reads in this case

I
q

5 = κ5
(

1
2 (3 −

√
5)x4

1x2 − 2x3
1x2

2 + (1 +
√

5)x2
1x3

2 − 1
2 (1 +

√
5)x1x

4
2

)
. (7.28)

Obviously I
q

2 and I
q

5 are algebraically independent as one is of even and the other of odd degree,
respectively. As for the even case, we can proceed and carry out in (7.28) the substitutions
�x → �y → �z such that the invariants are expressed in terms of the Jacobian relative coordinates
zi . In these coordinates the inverse Riemannian (3.19) results to

g−1
ij =

3∑
k=1

∂Ii

∂zk

∂Ij

∂zk

= κ2(5 −
√

5)

(
1
5I2

1
2I5

1
2I5 5I 4

2 κ2
5

/
κ5

2

)
ij

. (7.29)

Once again we have the problem that g−1
ij is not of degree 2 in the variables Ii . As for h = 8

we can relate once more to the gl2(R) � R
5 algebra, see (2.6) and (3.18). From now on we

keep κ2 = 1 and bring the Hamiltonian into the desired form (2.5), (2.10)

D = (
√

5 − 5)

(
1

5
J 2J 1 + J 1J 3 + 5κ2

5 J 5J 9 −
(

γ1 − 7

10
− 2κ

3

)
J 1 − γ0

5
J 2 +

γ0

2
J 3

)
.

(7.30)

We proceed similarly as in the previous subsection and compute from (7.29)

G−1 = det g−1 = 5
2 (

√
5 − 3)

(
I 2

5 − 4κ2
5 I 5

2

)
. (7.31)

In order to obtain Calogero-type potentials it is vital to factorize G−1 further into linear
polynomials. Let us proceed analogously as for even Coxeter numbers and compute the orbits
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of the q-deformed Coxeter element ( 7.17). We find

σ 0
q α

q

1 α
q

2

σ 1
q α

q

3 = −(αq

1 + α
q

2

)
α

q

7 = 1
2 (3 +

√
5)α

q

1 + 1
2 (1 +

√
5)α

q

2

σ 2
q α

q

4 = − 1
2 (1 +

√
5)α

q

1 − 1
2 (

√
5 − 1)α

q

2 α
q

8 = 1
2 (1 +

√
5)α

q

1

σ 3
q α

q

5 = 1
2 (

√
5 − 1)α

q

2 α
q

9 = − 1
2 (1 +

√
5)
(
α

q

1 + α
q

2

)
σ 4

q α
q

6 = 1
2 (1 +

√
5)α

q

1 + α
q

2 α
q

10 = − 1
2 (3 +

√
5)α

q

1 − α
q

2

σ 5
q α

q

1 α
q

2

.

(7.32)

Note that the order of the Coxeter element (7.17) is still h, that is in this case σ 5
q = 1. For odd

values of the Coxeter number we can still separate the roots into positive and negative roots,
but now the negative roots can no longer be obtained by reversing the signs of all positive roots.
There are now positive roots without a negative counterpart. Unfortunately, as a consequence
of this the factorization property (3.18) does no longer hold in its stated form. Nonetheless,
one can still select some hyperplanes obtained from the root system (7.32) and factorize G−1,
albeit now the selection principle does no longer favour the positive roots and is less clear. We
compute

pα
q

1
= x1 − 1

4 (3 +
√

5)x2 pα
q

2
= x1 − 2x2

pα
q

3
= x1 − (2 +

√
5)x2 pα

q

7
= x1 + 1

2 (1 +
√

5)x2

pα
q

4
= 1

2 (1 +
√

5)x1 − x2 pα
q

8
= x1 − 1

4 (3 +
√

5)x2

pα
q

5
= x1 − 2x2 pα

q

9
= x1 + 1

2 (1 − √
5)x2

pα
q

6
= 1

2 (
√

5 − 1)x1 + x2 pα
q

10
= x1 − 1

2 (
√

5 − 1)x2

(7.33)

and construct from this

J = pα
q

1
pα

q

2
pα

q

3
pα

q

7
pα

q

10
. (7.34)

Now, unlike in the even case, the splitting into long and short roots no longer corresponds to
factors in terms of hyperplanes.

For the pre-potential we make now the ansatz

P0 = eI2 , P1 = I 2
5 − 4κ2

5 I 5
2 . (7.35)

With formula (5.4) we then compute the potential in terms of invariant polynomials to

V = γ 2
0

4

(
1 − 1√

5

)
I2 + 5(

√
5 − 5)λκ2

5
I 4

2

I 2
5 − 4κ2

5 I 5
2

, (7.36)

with λ = (γ 2
1 − 1

/
4). Once again we can also re-write V in terms of the z-variables. First we

factorize

P1 = 52

3445
(z1 − z3)

2
∏

ε̄,ε=±1

[(
1 +

√
3 +

6ε√
5

)
z2+ε̄ +

(
1 −

√
3 +

6ε√
5

)
z2−ε̄ − 2z2

]2

(7.37)

from which we deduce the potential to

V = 1

2
ω2

3∑
k=1

z2
k +

λ

(z1 − z3)2
+
∑

ε̄,ε=±1

6(1 + ε/
√

5)λ[(
1 +
√

3 + 6ε√
5

)
z2+ε̄ +

(
1 −

√
3 + 6ε√

5

)
z2−ε̄ − 2z2

]2
(7.38)

with ω2 = 3(3 − √
5)γ 2

0

/
20. Once again all off-diagonal terms cancel each other and as in

the even case this potential is also of Calogero type. We find similar types of potentials for
higher values of the Coxeter number.
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8. Conclusions

It has been shown previously that solvability of certain types of Hamiltonians can be established
[17–20] by relating the differential operators inside the Hamiltonians, that is essentially the
Laplace operator, to a representation of the gl(N)-Lie algebra. This formulation can be made
very systematic by associating the differential structure with polynomial invariants of Coxeter
groups. This led the authors of [22–25] to propose a procedure which allows us to construct
solvable Hamiltonians by taking the structure of the polynomial invariants as a starting point.
Here we showed that this procedure can be extended successfully to polynomial invariants of
q-deformed Coxeter groups. We constructed explicitly some potentials resulting from these
types of invariants. Due to the fact that the Jacobian determinant can still be factorized in
terms of linear polynomials the resulting potentials are of Calogero type.

There are several open issues and unanswered questions which deserve further
investigations. Clearly it would be interesting to carry out the outlined procedure for other
algebras than G

q

2 . The presented example indicates that one can expect similar structures
beyond G

q

2 . Eventually one should aim at a unified formulation, as opposed to case-by-case
studies, analogously to the non-deformed case as indicated in section 5. Crucial here will be
the factorization of the Jacobian determinant J . In the presented example this works nicely
for even Coxeter numbers, but for odd h the example hints that one possibly has to employ
a different q-deformed Coxeter transformation in order to obtain a definite criterion for the
selection of the hyperplanes which yields the factorization of J .

To achieve a unified formulation it will be important to have systematic and generic
expressions for the polynomial invariants [28]. In the above analysis we have seen that the
choice of a suitable basis is absolutely crucial for this task. The favoured one is the eigenbasis
of the Coxeter element as we have demonstrated.

Since we have shown that one can extend the approach from Coxeter to q-deformed
Coxeter groups, it is also natural to suspect that one might also employ it for reflection groups
of the general type introduced in [34].

Naturally it appears also possible to construct a potential of Sutherland type by using
different types of coordinates [28].

To find the explicit wavefunction for the above Hamiltonians is now also an obvious
question to ask. Following the quoted literature there is a straightforward procedure to
construct them from the above-mentioned results. In this context one might also address
technical questions as for instance self-adjointness similar as it has been done in Calogero’s
original work for hardcore boundary conditions [1–3]. For slightly more general boundary
conditions, see, e.g., [35]. Conceptionally one should stress that solvability in the sense
provided here is far more constructive with regard to this question than integrability. The
latter usually just guarantees the existence of exact solutions, whereas solvability is already
tied closely to the explicit solutions.
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